Single Buffer / Driver with Open Drain

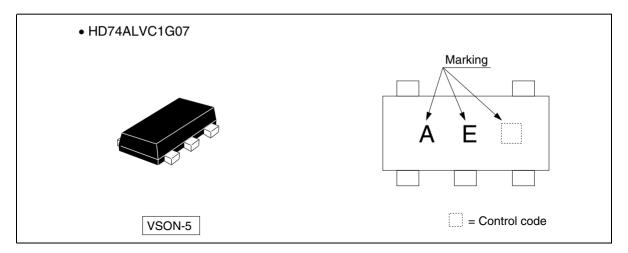
HITACHI

ADE-205-629 (Z)

Rev.0 June. 2001

Description

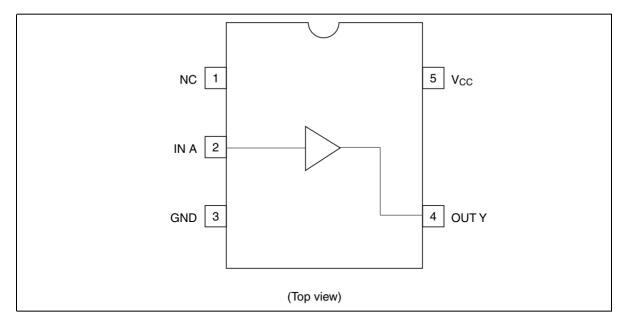
The HD74ALVC1G07 has a buffer in a 5 pin package. Low voltage and high speed operation is suitable for the battery powered products (e.g., notebook computers), and the low power consumption extends the battery life.


Features

- The basic gate function is lined up as hitachi uni logic series.
- Supplied on emboss taping for high speed automatic mounting.
- Supply voltage range: 1.2 to 3.6 V
 Operating temperature range: -40 to +85°C
- All inputs V_{IH} (Max.) = 3.6 V (@V_{CC} = 0 V to 3.6 V) All outputs V_{O} (Max.) = 3.6 V (@V_{CC} = 0 V)
- Output current $2 \text{ mA } (@V_{cc} = 1.2)$ $4 \text{ mA } (@V_{cc} = 1.4 \text{ V to } 1.6 \text{ V})$ $6 \text{ mA } (@V_{cc} = 1.65 \text{ V to } 1.95 \text{ V})$ $18 \text{ mA } (@V_{cc} = 2.3 \text{ V to } 2.7 \text{ V})$ $24 \text{ mA } (@V_{cc} = 3.0 \text{ V to } 3.6 \text{ V})$
- Package type

Package type	Package code	Package suffix	Taping code
VSON-5 pin	TNP-5D	VS	E (3,000 pcs / Reel)

Outline and Article Indication


Function Table

Input A	Output Y
Н	Z
L	L

H: High level L: Low level

Z: High impedance

Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage range	V _{cc}	-0.5 to 4.6	V	
Input voltage range *1	V _i	-0.5 to 4.6	V	
Output voltage range *1,2	V _o	–0.5 to V _{cc} +0.5	V	Output : L or Z
		-0.5 to 4.6		V _{cc} : OFF
Input clamp current	I _{IK}	-50	mA	V ₁ < 0
Output clamp current	I _{ok}	±50	mA	$V_{o} < 0 \text{ or } V_{o} > V_{cc}$
Continuous output current	I _o	±50	mA	$V_{o} = 0 \text{ to } V_{cc}$
Continuous current through V _{cc} or GND	I _{CC} or I _{GND}	±100	mA	
Maximum power dissipation at Ta = 25°C (in still air) ^{'3}	P_{τ}	200	mW	
Storage temperature	Tstg	-65 to 150	°C	

Notes:

The absolute maximum ratings are values which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

- 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 2. This value is limited to 4.6 V maximum.
- 3. The maximum package power dissipation was calculated using a junction temperature of 150°C.

Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V _{cc}	1.2	3.6	V	
Input voltage range	V _i	0	3.6	V	
Output voltage range	V _o	0	V _{cc}	V	
Output current	I _{OL}	_	2	mA	V _{cc} = 1.2 V
		_	4		V _{cc} = 1.4 V
		_	6		V _{cc} = 1.65 V
		_	18		V _{cc} = 2.3 V
		_	24		V _{cc} = 3.0 V
Input transition rise or fall rate	Δt / Δν	0	20	ns / V	V _{cc} = 1.2 to 2.7 V
		0	10		$V_{cc} = 3.3 \pm 0.3 \text{ V}$
Operating free-air temperature	Та	-40	85	°C	

Note: Unused or floating inputs must be held high or low.

Electrical Characteristics

 $(Ta = -40 \text{ to } 85^{\circ}C)$

Item	Symbol	$V_{cc}(V)$	Min	Тур	Max	Unit	Test conditions
Input voltage	V _{IH}	1.2	V _{cc} ×0.75	_	_	V	
		1.4 to 1.6	V _{cc} ×0.7	_	_	_	
		1.65 to 1.95	V _{cc} ×0.7	_	_	_	
		2.3 to 2.7	1.7	_	_	_	
		3.0 to 3.6	2.0	_	_	_	
	V _{IL}	1.2	_	_	V _{cc} ×0.25	_	
		1.4 to 1.6	_	_	V _{cc} ×0.3	_	
		1.65 to 1.95	_	_	V _{cc} ×0.3	_	
		2.3 to 2.7	_	_	0.7	_	
		3.0 to 3.6	_	_	0.8	_	
Output voltage	V _{oL}	Min to Max	_	_	0.2	V	I _{OL} = 100 μA
		1.2	_	_	0.3	_	I _{OL} = 2 mA
		1.4	_	_	0.3	_	I _{OL} = 4 mA
		1.65	_	_	0.3	_	I _{OL} = 6 mA
		2.3	_	_	0.55		I _{OL} = 18 mA
		3.0	_	_	0.55	_	I _{OL} = 24 mA
Input current	I _{IN}	3.6	_	_	±5	μΑ	$V_{IN} = 3.6 \text{ V or GND}$
Off state output current	l _{oz}	3.6	_	_	±5	μΑ	$V_{OUT} = V_{CC}$ or GND
Quiescent supply current	I _{cc}	3.6	_		10	μΑ	$V_{IN} = V_{CC}$ or GND, $I_{O} = 0$
Output leakage current	I _{OFF}	0	_		5	μΑ	V _{IN} or V _{OUT} = 0 to 3.6 V
Input capacitance	C _{IN}	3.3	_	4.5	_	pF	$V_{IN} = V_{CC}$ or GND

Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

Switching Characteristics

 $(Ta = -40 \text{ to } 85^{\circ}C)$

• $V_{cc} = 1.2 \text{ V}$

Item	Symbol	Min	Тур	Max	Unit	Test conditions	FROM (Input)	TO (Output)
Propagation delay time	t _{zL} t _{Lz}	_	5.5	_	ns	$C_L = 15 pF$	Α	Υ

• $V_{cc} = 1.5 \pm 0.1 \text{ V}$

Item	Symbol	Min	Тур	Max	Unit	Test conditions	FROM (Input)	TO (Output)
Propagation delay time	t _{zL} t _{LZ}	1.0	_	7.0	ns	$C_L = 15 pF$	Α	Υ

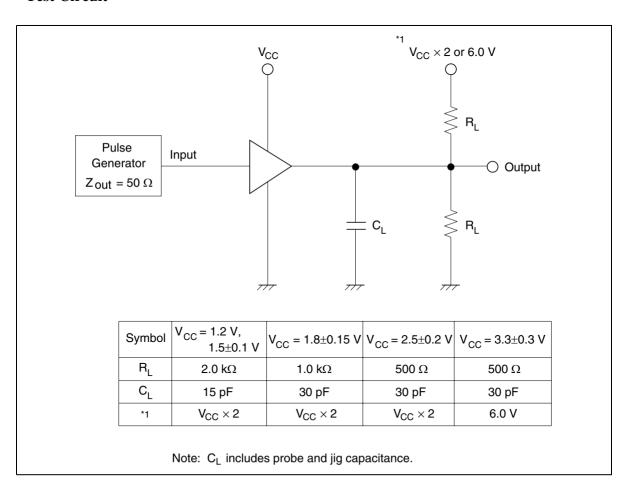
• $V_{cc} = 1.8 \pm 0.15 \text{ V}$

Item	Symbol	Min	Тур	Max	Unit	Test conditions	FROM (Input)	TO (Output)
Propagation delay time	t _{zL} t _{LZ}	1.0	_	5.0	ns	C _L = 30 pF	Α	Υ

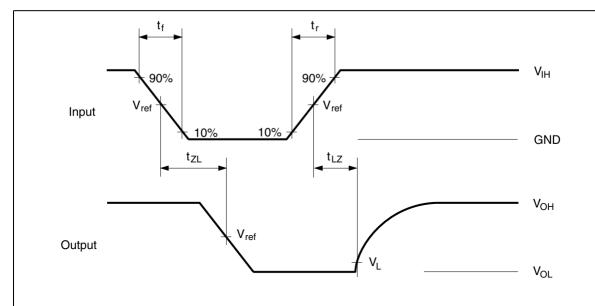
• $V_{cc} = 2.5 \pm 0.2 \text{ V}$

Item	Symbol	Min	Тур	Max	Unit	Test conditions	FROM (Input)	TO (Output)
Propagation delay time	t _{zL} t _{LZ}	0.5	_	3.5	ns	$C_L = 30 pF$	Α	Υ

• $V_{cc} = 3.3 \pm 0.3 \text{ V}$

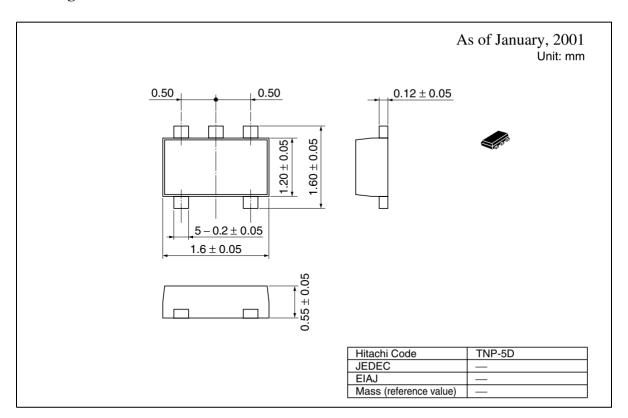

Item	Symbol	Min	Тур	Max	Unit	Test conditions	FROM (Input)	TO (Output)
Propagation delay time	t _{zL} t _{LZ}	0.5	_	2.5	ns	$C_L = 30 pF$	Α	Υ

Operating Characteristics


 $(Ta = 25^{\circ}C)$

Item	Symbol	$V_{cc}(V)$	Min	Тур	Max	Unit	Test conditions
Power dissipation	$C_{\scriptscriptstyle{PD}}$	1.5	_	2.0	_	pF	f = 10 MHz
capacitance		1.8	_	2.0	_		
		2.5	_	2.5	_		
		3.3		3.5	_		

Test Circuit


Waveforms

Symbol	V _{CC} = 1.2 V, 1.5±0.1 V	V _{CC} = 1.8±0.15 V	V _{CC} = 2.5±0.2 V	V _{CC} = 3.3±0.3 V
t _r /t _f	2.0 ns	2.0 ns	2.5 ns	2.5 ns
V _{IH}	V _{CC}	V _{CC}	V _{CC}	2.7 V
V _{ref}	50%	50%	50%	1.5 V
V _L	$V_{L} = V_{OL} + 0.1 V$	$V_L = V_{OL} + 0.15 V$	$V_L = V_{OL} + 0.15 \text{ V}$	$V_L = V_{OL} + 0.3 V$

Note: Input waveform: PRR = 10 MHz, duty cycle 50%

Package Dimensions

Disclaimer

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent. copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Sales Offices

HITACHI

Semiconductor & Integrated Circuits Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: (03) 3270-2111 Fax: (03) 3270-5109

NorthAmerica : http://semiconductor.hitachi.com/ Europe http://www.hitachi-eu.com/hel/ecg Asia http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive San Jose, CA 95134

Hitachi Europe Ltd. Electronic Components Group Whitebrook Park Lower Cookham Road

Fax: <44> (1628) 585200

Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00 Singapore 049318

Hitachi Asia I td (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road Hung-Kuo Building

Taipei (105), Taiwan Tel: <886>-(2)-2718-3666 Fax: <886>-(2)-2718-8180 Telex: 23222 HAS-TP

URL: http://www.hitachi.com.tw

Copyright © Hitachi, Ltd., 2001. All rights reserved. Printed in Japan. Colophon 4.0

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower

World Finance Centre. Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong Tel : <852>-(2)-735-9218

Fax : <852>-(2)-730-0281 URL: http://semiconductor.hitachi.com.hk